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NOTE

Removing Small Features from Computational Domains

{. INTRODUCTION

Small size leatures canse difficulties in the numerical solu-
tion ol partial dilferential equations by the finite element or
finite difference methods. This is because such features
require refined meshes in their neighborhoods, with their
attendant problems. We have devised a method to avoid
these problems. It is to exclude each small feature from the
computational domain by surrounding it with an artificial
boundary upen which a new boundary condition is
imposed. This new boundary condition 1s chosen to account
exactly for the excluded feature. The problem in the reduced
domain, which we call the reduced problem, is more con-
venient than is the original probiem for numerical solution.
The artifictal boundary can be made large enough to be
compatible with the original mesh, so that no relinement is
necded.

This method is related to that of converting infinite
domains to finite computational domains by the introduc-
tion of an artificial external boundary. In that case, an exact
non-reflecting boundary condition can be imposed on the
solution at the artificial external boundary [1]. In the pre-
sent method artificial internal boundaries are introduced, as
was done in [2] to eliminate large homogeneous regions
and in [3] to eliminate re-entrant corners from computa-
tional domains. The boundary condition on the artificial
boundary surrounding an excluded small feature involves
the scaticring matrix § for that feature.

We shall explain the method by applying it to the
Helmholtz or reduced wave equation in a two-dimensional
domain containing a small scatterer. We shall also show
how the new boundary condition simplifies in special cases.
Finally we shall prove that the method doces yicld the
solution of the original problem.

The method is applicable to a small feature on or near a
boundary, as the examples in [ 3] show. However, uniess
the boundiry and boundary condition near this feature are
simple, the determination of the new boundary condition
may be dilficult,

2. DERIVATION OF THE BOUNDARY CONDITION

We consider a solution n(r, 0} of the Helmhoitz equalion
in a domain /D of the r, 0 plane:

Au+kiu=0 (r.0)e2/D. (2.1)
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The domain £2 contains a small subdomain D which we call
an obstacle or scatterer. On 4D, the boundary of D, we
suppose that « satislies some linear homogeneous boundary
condition -

Bu=0

{r,MHedD. (2.2a})

On 482 we require that for some given operator B, and some
given function g,
(r,0)ed&

Bu=g (2.2b)

With the origin r =0 in 12, we choose a radius R farge
cnough that D lics inside the circle r= R, which must be
contained in 2. Our goal is to find an operator M such
that v satisfics the lollowing boundary condition on the
circle r=R:

u, (R, 0y=Mu(R,0). (2.3)
The operator M may depend upon &, R, D, and the bound-
ary operator B in (2.2a). However, it musl be independent

of u.
To find M we write

o

u(r,0y="3%  u,(r)e™.

n= =

(2.4)

This representation holds in the annulus ro < r < R, where
r==ry is the smallest circle enclosing D. There the Fourier
coeflicient u,(r) is given by

2n
t,{r)= 5'; L u(r, 0) e ™" do. (2.5)

Separation of variables in (2.1) shows that w,(r) is a lincar
combination of the Bessel function J,(A») and the Hankel
function H"(kr):

w,(ry=a,J (kry+ b, H Mkr). (2.6)

When (2.6) is used in (2.4) the scries splits into a part con-
taining Bessel functions, which is regular at the origin, and
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a part containing Hankel functions, which is outgoing at
infinity. The first part can be viewed as a wave incident upon
the scatterer D and the second part, as the corresponding
scattered wave. As a consequence, each coefficient b, in the
scattered wave is a linear combination of the coefﬁcmnts a
in the incident wave, with weights S, which are elements of
the scattering matrix S;

(2.7)

Assuming that the S, are known, we now determine the
a, and b, in terms of the u,. First we set r= R in (2.6) and

use (2.7) to obtain

u(R)=J,(kR) a, +H“’(kR)ZS (2.8)

n;

This is a system of linear equations for the a,,. We denote the
coeflicient matrix on the right side of (2.8} by T with matrix
elements

Ty=Ju(kR) 8+ H,(kR) § (2:9)

nit
We write the elements of the inverse matrix T~
and we assume that T~
solution of (2.8) as

Yas (T '),
! exists. Then we can write the

(2.10)

=Y (T7), 4,(R).

Now (2.6) can be solved for b, With r=R
given by (2.10}, the result is

and with q,
by = Lu, (R}~

== [u"(R) —

Next we differentiate (2.6) with respect to r, set r = R, and
use {2.10) and (2.11) to obtain

T (kR) a,)/H " 'kR)

T(kR)Y (TN, uj(R)]/Hf,”(kR).
: 2.11)

kH'V'(kR)

6run(R)=m

u,(R)

+ {ij,(kR) -

xy (T 1

J

kJ,(kR) H " (kR)
Hf,’ NkR) }

nj Ui (R). (2.12)

Finally we multiply (2.12) by ¢™® and sum over n. Then the
left side becomes &, u( R, 8). On the right side we use (2.5) to
eliminate the u,(R) and then we can write (2.12) in the form
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] k - H(l](k‘R) — in” . ’
3,u(R, 9) =22 Z [Hm(kmj (R, ) df

, J(kRY H Y (kR)
"{J"“‘R) HOKR) }
x i (T*'),,Jj ew'u(R,G')dﬂ’Je'”ﬂ

(2.13)

This result (2.13) is the desired boundary condition. [t is
of the form (2.3) with M a non-local integral operator
defined by the right side of (2.13). The expression in braces
in (2.13} can be simplified by using the Wronskian of J,
and H'!.

By using (2.13) we can formulate a problem, which we
call the reduced problem, in the reduced domain /R, i.e.,
in 2 with the disk R deleted. Here R is the disk r <R It
consists in solving (2.1) in Q/R, (2.2b) on 492, and (2.13)
onr=R

3. EXAMPLES

We shall now show how (2.13) simplifies in three special
cases. First, if there is no scatterer or object contained
within the circle r = R, then S,;=0for all »and j. Then (2.9)
shows that 7,,=J,(kR) d,; so T is diagonal. It is invertible
if and only if J, (kR)#0 for all », i.e., if and only il & is not
an eigenvalue of (2.1} in r < R with the boundary condition
u(R 8)=0. When k is not an eigenvalue, (T7"),, =
J.(kR)and (2.13) reduces to

6u(R8= f ’kR;

nj

2n
J efmﬂ'u(R, gf) . eini?.
0
(3.1)

This is just the result of Givoli and Keller 1], which they
introduced to eliminate a large circular region from a
computational domain, thereby reducing the size of the
computational domain.

Second, suppose that the scatterer is small compared to
the wavelength 2x/k. Then only the element Sy, of the scat-
tering matrix § is significantly different from zero. Conse-
quently (2.9} yields Too=Jo(AR)+ H ' {kR) Sy, while all
the other T, are given by T,,=J,(kR)&,, (n,j)# (0,0}
Again, T is diagonal and T ™! exists if and only if each
diagonal element of T is non-zero. When this is the case,
(2.13) simplifies to
R 0)= k JolkR)+ H{ (kR) Soo
AR O =5 " JolkRY+ HD(kR) S0

k S {kR)
+._

2 2o JkR)

L (R, 0} d&’

j (R, ) d’ - .

(3.2)
When S, = 0 this reduces to (3.1).
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Third, we suppose that the scatterer is axially symmetric
Then § is diagonal so that §,;,=§,,,4,; and therefore T, =
(J.kR)+ H'(kR)S,,]6,. If every diagonal entry I!'",m
ot zero, T is invertible and 7 ~' ts diagenal, Then {2.13)

becomes

J(kR)+ H'(kR) S,
JkR)+ HD(kR) S,,

éu(R@:zi }:

2
x| e u(R, &) der e (3.3)

0
This reduces to (3.2) when S,,=0 for n#0 and to (3.1)
when all §,,, = 0.

The scattering matrix S must be determined separately by
analytical, numerical, or experimental means. For example,
suppose that D is a circular disk of radius a with u,{a, 8y =0.
Then (2.5) shows that &,u,(a) =0 and (2.6) yields

by S (ka)

a,  H{(ka)

=S

- (3.4)
Thus in this special case S is diagonal and it can be found
explicitly.

4. EQUIVALENCE OF THE REDUCED PROBLEM TO
THE ORIGINAL PROBLEM

We shall now consider the reduced problem in the
domain €2/R. The boundary condition (2.13) is imposed at
the inner boundary r= R. Our goal is to show that this
problem has a unique solution which is exactly the same as
the restriction of the solution of the original problem to this
domain.

We begin by formulating the original problem as follows:

Au+ku=0  (r,0eQ/D (4.1)
Bu=0  (r,0)edD (4.2)
Biu=g (r0)cdQ. (4.3)

In (4.3) g is a given or incident field and B, is some linear
boundary operator. For instance, B, might be the operator
in the exact non-reflecting boundary condition on 4Q. In
any case, we assume that the original problem (4.1)-(4.3)
has a unique solution «°(r, 0).

Next we consider the inner problem of solving (4.1) in
R/D with the boundary condition (4.2} on the inner bound-
ary 8D and the outer boundary conditton

u= U(B), r=R. {4.4)
Here U@ = u"(R, 8) is the solution of (4.1)-(4.3) evaluated
on r=R OQur second hypothesis is that this inner
problem—{4.1) in R/D, (42), and (44)—has a unique
solution #(r@). This hypothesis implies that & is not an
eigenvalue of the inner problem. Then from the solution of

the inner problem we compute u'(R, ) and it is a linear
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functional of U(#)=u'(R,8), which we write in the
form (2.3)

u,(R, 8)=Mu(R, 8). {(4.5)
The operator M is given explicitly by (2.13).
Now we shall prove the following theorem:

THEOREM. Suppose that the original problem (4.1}-(4.3)
has a unigue solution u°(r, 8) and that the inner problem (4.1)
in R/D, (42), and (4.4) also has a unique solution for any
U(8). Then the reduced problem (4.1) in £2/R, (4.3), and (4.5)
has a unigue solution and it is equal to the restriction of
u®(r, 8) to 2/R.

Proof. The solution «°(r, ), when restricted to R/D, is
a solution of the inner problem. By the hypothesis it is there-
fore the unique solution of that problem, so it satisfies (4.5).
Since u° also satisfies (4.1} in /R and (4.3), its restriction
to £2/R is a solution of the reduced problem. Therefore it
remains to be proved that this is the only solution to the
reduced problem.

Let us suppose that there were two solutions «” and &’ of
the reduced problem which have two different values U/{8)
and J(8) onr= R. Then by using U/ and U in (4.4) we would
obtain two solutions «' and & of the inner problem. Now
(4.5} is satisfied by «” and & as well as by «* and . Thus we
have u'(R, 8)=U(0y=u'(R,8) and ul(R, )= MUB)=
u‘(R, 0) and, similarly, #” =2’ and # =&’ on r = R. There-
fore the pair &” in /R and ' in R/D yield a function u in
£2/D which is continuous with continuous first derivatives.
Similarly, #" in £/R and & in R/D yield a C' function &
in £/D. Both the functions « and # so defined are solutions
of the original problem, so by the uniqueness hypothesis
they are identical. Therefore 1™ = &7, so the reduced problem
has only one solution. This completes the proof of the
theorem.
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